To use the functions in this tutorial in your own R session you would need to use library
to load the tidyverse
package as shown below. I’ve pre-loaded it for this tutorial.
library(tidyverse)
There are two main ways that spreadsheets can be organized. The wide data format has one individual or sample per row and observations spread across multiple columns.
Wide Data Example 1Alternatively, in the long data format there is a single observation per row, and a key that indicates the type of observation.
Long Data Example 1Typically data arrives in the wide format. Often to accomplish the analyses you will want to do in R you will need it in the long format. For example, ggplot only deals with a single column of values per aesthetic. If you want to plot multiple categories of observations at once you need them gathered into the long format. For example to make the graph below, the data has to be in the long format:
To convert wide format to long format we use the pivot_longer()
function from tidyverse. It is appropriately named, because we are reformatting to make our data sheet longer.
fruit.long <- fruit %>%
pivot_longer(c(color, shape, size), # the column names that we want to gather.
# we could also use starts_with(), etc.
names_to="data_type", # the column name of the new column that will
# contain the key (the old coumn names)
values_to="value" # the column name of the column that will contain the observations
)
fruit.long
Pay attention to the arguments. * The first arguments specify the columns that are to be combined. * names_to
defines the column name of the new column that will contain the old column names * values_to
defines the column name of the column that will contain the actual data
There are multiple ways that you can specify the columns to be gathered.
*You can list them all enclosed by c()
, as done in the first example:
fruit.long <- fruit %>%
pivot_longer(c(color, shape, size),
names_to="data_type",
values_to="value")
fruit.long
*You can specify them as a range from the first to last column that you want:
fruit.long <- fruit %>%
pivot_longer(color:size,
names_to="data_type",
values_to="value")
fruit.long
*You can instead use the -
to indicate columns that you do not want to gather; all others will be included. Try it by changing the code below
fruit.long <- fruit %>%
pivot_longer(-COLUMN_TO_EXCLUDE,
names_to="data_type",
values_to="value")
fruit.long
You can also use all the other tidy
column specifications such as starts_with()
, ends_with()
, etc.
Practice what you learned above to gather the hyp, int1, int2, int3, and int4 columns together in the tomato data set. Your end product should look like this:
What if you need to go the other direction, from long format to wide? For this we use the pivot_wider()
function, to spread our values across multiple columns.
If we start with a long data set:
fruit.long %>%
pivot_wider(names_from = "data_type", # which column holds the names for the new columns?
values_from = "value") # which column contains the values?
Now try converting the the tomato data from long format to recreate the original wide format. Modify the code below.
I have created a tomato.long
data set. First take a look:
tomato.long
tomato.long %>%
pivot_longer(...)
There is additional functionality not covered here, including clever ways to manipulate the column names.
Information on this and other aspects of pivoting is provided on the tidyverse website